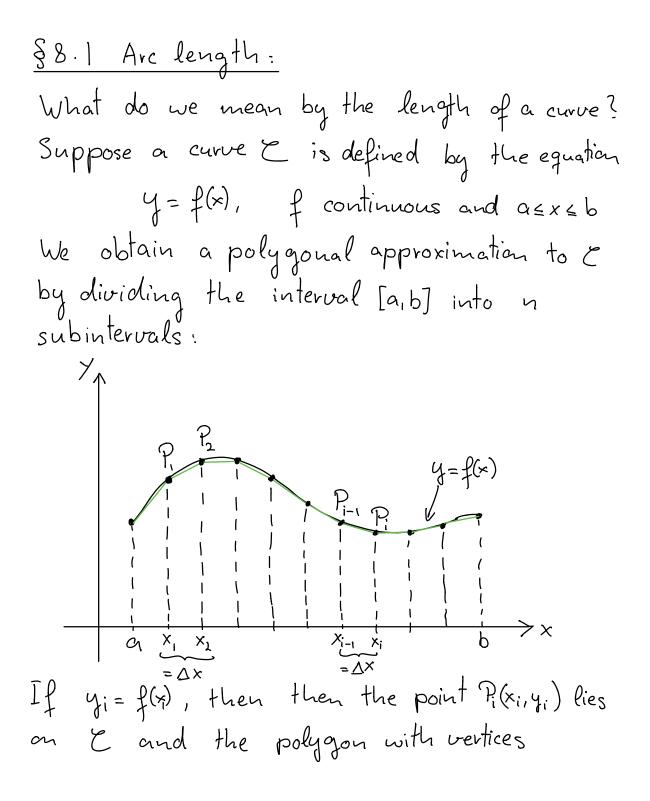
<u>\$ 8. Arc length, Surface of Revolution,</u> and Polar coordinates



Po, Pi, ---, Pi is an approximation to E.
Definition 8.1 ("length")
The "length" of the curve is given
by
$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

We can derive an integral formula for L
in case f has a continuous derivative, i.e. is
"smooth" $(f \in C'(Ca,b))$):
 $\Delta y_i = y_i - y_{i-1}$, then
 $|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$
Mean value Theorem
 $\Rightarrow \exists x_i^* \in (x_{i-1}, x_i) \text{ s.t.}$
 $f(x_i) - f(x_{i-1}) = f'(x_i^*)(x_i - x_{i-1})$
that is $\Delta y_i = f'(x_i^*) \Delta x$
Thus we have
 $|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y_i)^2} = [(\Delta x)^2 + [f(x_i^*)\Delta x]^2]$
 $= \sqrt{1 + [f'(x_i^*)]^2} \Delta x$ (since $\Delta x > 0$)

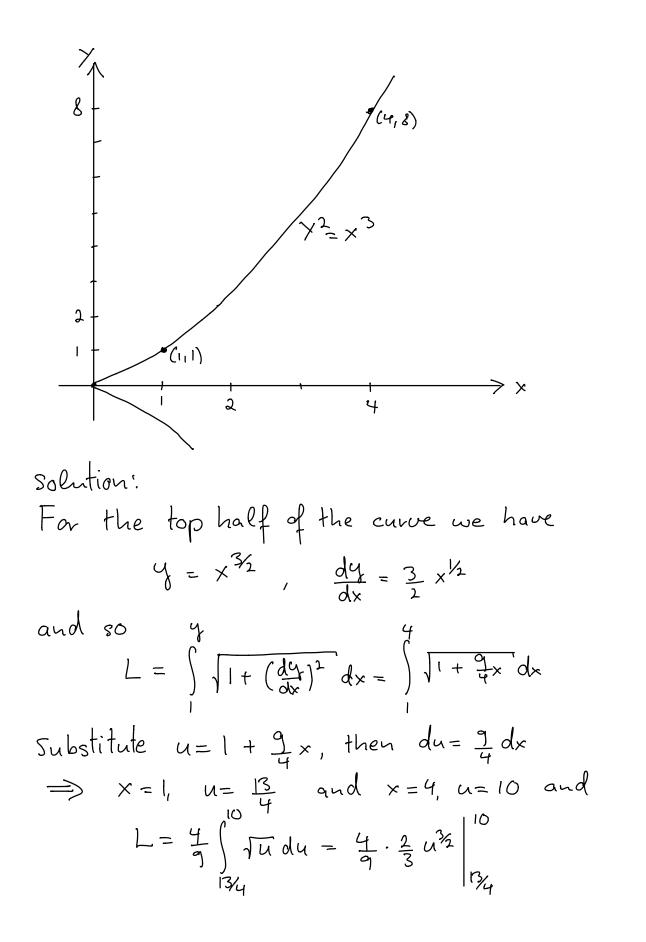
Therefore, by Definition 8.1,

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |R_i P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} \Delta x$$
We recognize this expression (by Th. 7.1) as
$$\int_{\alpha} \sqrt{1 + [f'(x)]^2} dx$$
The integral exists because $g(x) = \sqrt{1 + [f'(x)]^2}$
is continuous. Thus we have proved the
following:

$$\frac{Proposition 8.1:}{If f^1 is continuous an [a_ib], then the
length of the curve $y = f(x), \ a \le x \le b, is$

$$L = \int_{\alpha}^{b} \sqrt{1 + [f'(x)]^2} dx$$$$

Example 8.1:
Find the length of the arc of the semicubical
$$y^2 = x^3$$
 between the points (1,1) and (4,8):



We make the trigonometric substitution

$$y = \frac{1}{2} \tan \theta, \quad giving \quad dy = \frac{1}{2} \sec^{2}\theta d\theta, \quad and \quad \sqrt{1+4y^{2}} = \sqrt{1+\tan^{2}\theta} = \sec \theta$$
When $y = 0$, $\tan \theta = 0$, $30 \quad \theta = 0$; when $y = 1$,
 $\tan \theta = 2$, $30 \quad \tan^{-1} 2 = x$. Thus

$$L = \int_{0}^{\infty} \sec \theta \cdot \frac{1}{2} \sec^{2}\theta d\theta = \frac{1}{2} \int_{0}^{\infty} \sec^{3}\theta d\theta$$

$$= \frac{1}{2} \cdot \frac{1}{2} \left[\sec \theta \tan \theta + \log |\sec \theta + \tan \theta| \right]_{0}^{x}$$
(leave as Home work)

$$= \frac{1}{4} \left(\sec x \tan x + \log |\sec x + \tan x| \right)$$
Since $\tan x = 2$, we have $\sec^{2}x = 1 + \tan^{2}x = 5$,
so $\sec x = \sqrt{5}$ and

$$L = \frac{\sqrt{5}}{2} + \frac{\log(\sqrt{5} + 2)}{4}$$
Definition 8.2 (arc length function):
 $x \in x \le b$, then the "arc length function" is:
 $S(x) = \int_{0}^{\infty} \sqrt{1 + \left[\frac{p'(t)}{2}\right]^{2}} dt$

We have

$$\frac{ds}{dx} = \sqrt{1 + [f'(x)]^2} = \sqrt{1 + (\frac{dy}{dx})^2}$$
Sometimes we write this in the form

$$(ds)^2 = (dx)^2 + (dy)^2$$
Example 8.3:
Find the arc length function for the curve

$$y = x^2 - \frac{1}{8} \log x \ taking \ P(1,1) \ as \ the \ starting \ point.$$
Solution:
If $f(x) = x^2 - \frac{1}{8} \log x, \ then \ f'(x) = 2x - \frac{1}{8x}$

$$1 + [f'(x)]^2 = 1 + (2x - \frac{1}{8x})^2 = 1 + 4x^2 - \frac{1}{2} + \frac{1}{64x^2} = (2x + \frac{1}{8x})^2$$

$$\Rightarrow \sqrt{1 + [f'(x)]^2} = 2x + \frac{1}{8x}$$
Thus the arc length is given by
 $s(x) = \int_{1}^{x} (2t + \frac{1}{8t}) dt = t^2 + \frac{1}{8} \log t \Big|_{x}^{x} = x^2 + \frac{1}{8} \log x - 1$

