§8. Are length, Surface of Revolution, and Polar coordinates
§8.1 Arc length:
What do we mean by the length of a curve? Suppose a curve C is defined by the equation $y=f(x), \quad f$ continuous and $a \leq x \leq b$ We obtain a polygonal approximation to C by dividing the interval $[a, b]$ into n subintervals:

If $y_{i}=f(x)$, then then the point $P_{i}\left(x_{i}, y_{i}\right)$ lies on C and the polygon with vertices
$P_{0}, P_{11} \ldots, P_{n}$ is an approximation to e.
Definition 8.1 ("length")
The "length" of the curve is given by

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

We can derive an integral formula for L in case f has a continuous derivative, ie. is "smooth" $\left(f \in C^{\prime}((a, b))\right)$:
$\Delta y_{i}=y_{i}-y_{i-1}$, then

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
\end{aligned}
$$

Mean value Theorem

$$
\begin{aligned}
& \Rightarrow \exists x_{i}^{*} \in\left(x_{i-1}, x_{i}\right) \text { s.t. } \\
& \quad f\left(x_{i}\right)-f\left(x_{i-1}\right)=f^{\prime}\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

that is $\quad \Delta y_{i}=f^{\prime}\left(x_{i}^{*}\right) \Delta x$
Thus we have

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{(\Delta x)^{2}+\left[f^{\prime}\left(x_{i}^{*}\right) \Delta x\right]^{2}} \\
& =\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \sqrt{(\Delta x)^{2}} \\
& =\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \quad(\text { since } \Delta x>0)
\end{aligned}
$$

Therefore, by Definition 8.1,

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

We recognize this expression (by Th. 7.1) as

$$
\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

The integral exists because $g(x)=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$ is continuous. Thus we have proved the following:
Proposition 8.1:
If f^{\prime} is continuous on $[a, b]$, then the length of the curve $y=f(x), \quad a \leq x \leq b$, is

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Example 8.1:
Find the length of the are of the semicubical $y^{2}=x^{3}$ between the points $(1,1)$ and $(4,8)$:

solution:
For the top half of the curve we have

$$
y=x^{3 / 2}, \quad \frac{d y}{d x}=\frac{3}{2} x^{1 / 2}
$$

and so

$$
L=\int_{1}^{y} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{4} \sqrt{1+\frac{9}{4} x} d x
$$

Substitute $u=1+\frac{9}{4} x$, then $d u=\frac{9}{4} d x$ $\Rightarrow x=1, u=\frac{13}{4}$ and $x=4, u=10$ and

$$
L=\frac{4}{9} \int_{13 / 4}^{10} \sqrt{u} d u=\left.\frac{4}{9} \cdot \frac{2}{3} u^{3 / 2}\right|_{13 / 4} ^{10}
$$

$$
=\frac{8}{27}\left[10^{3 / 2}-\left(\frac{13}{4}\right)^{3 / 2}\right]=\frac{1}{27}(80 \sqrt{10}-13 \sqrt{13})
$$

Remark 8.1:
If a curve has the equation $x=g(y), c \leqslant y \leqslant d$, and $g^{\prime}(y)$ is continuous, we have

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Example 8.2:
Find the length of the parabola $y^{2}=x$ from $(0,0)$ to $(1,1)$.

Solution:
Since $x=y^{2}$, we have $\frac{d x}{d y}=2 y$ and thus

$$
L=\int_{0}^{1} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{1} \sqrt{1+4 y^{2}} d y
$$

We make the trigonometric substitution $y=\frac{1}{2} \tan \theta$, giving $d y=\frac{1}{2} \sec ^{2} \theta d \theta$, and

$$
\sqrt{1+4 y^{2}}=\sqrt{1+\tan ^{2} \theta}=\sec \theta
$$

When $y=0, \tan \theta=0$, so $\theta=0$; when $y=1$, $\tan \theta=2$, so $\tan ^{-1} 2=\alpha$. Thus

$$
\begin{aligned}
L & =\int_{0}^{\alpha} \sec \theta \cdot \frac{1}{2} \sec ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\alpha} \sec ^{3} \theta d \theta \\
& =\frac{1}{2} \cdot \frac{1}{2}[\sec \theta \tan \theta+\log |\sec \theta+\tan \theta|]_{0}^{\alpha}
\end{aligned}
$$

(leave as Homework)

$$
=\frac{1}{4}(\sec \alpha \tan \alpha+\log |\sec \alpha+\tan \alpha|)
$$

Since $\tan \alpha=2$, we have $\sec ^{2} \alpha=1+\tan ^{2} \alpha=5$, so $\sec \alpha=\sqrt{5}$ and

$$
L=\frac{\sqrt{5}}{2}+\frac{\log (\sqrt{5}+2)}{4}
$$

Definition 8.2 (are length function):
Let C be a smooth curve given by $y=f(x)$, $a \leqslant x \leqslant b$, then the "arc length function" is:

$$
S(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

We have

$$
\frac{d s}{d x}=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

Sometimes we write this in the form

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}
$$

Example 8.3:
Find the arc length function for the curve $y=x^{2}-\frac{1}{8} \log x$ taking $P_{0}(1,1)$ as the starting point.
Solution:
If $f(x)=x^{2}-\frac{1}{8} \log x_{1}$ then

$$
\begin{aligned}
& f^{\prime}(x)=2 x-\frac{1}{8 x} \\
& 1+\left[f^{\prime}(x)\right]^{2}=1+\left(2 x-\frac{1}{8 x}\right)^{2}=1+4 x^{2}-\frac{1}{2}+\frac{1}{64 x^{2}} \\
&=4 x^{2}+\frac{1}{2}+\frac{1}{64 x^{2}}=\left(2 x+\frac{1}{8 x}\right)^{2} \\
& \Rightarrow \sqrt{1+\left[f^{\prime}(x)\right]^{2}}=2 x+\frac{1}{8 x}
\end{aligned}
$$

Thus the are length is given by

$$
\begin{aligned}
\delta(x) & =\int_{1}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t \\
& =\int_{1}^{x}\left(2 t+\frac{1}{8 t}\right) d t=t^{2}+\left.\frac{1}{8} \log t\right|_{1} ^{x}=x^{2}+\frac{1}{8} \log x-1
\end{aligned}
$$

